Chemical name: N-(2-((3-(4-hydroxyphenethylamino)-3-oxopropyl)disulfanyl)ethyl)-1-(5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)-3,6,9,12-tetraoxapentadecan-15-amide // Synonyms: cleavable Biotin-PEG(4)-Tyramide linker

  • Product code:LS-3930
  • Formula:C34H55N5O9S3
  • Molecular weight:774,02 g/mol
Grouped product items
Qty Packing unit Price SKU
50 mg
100 mg
Safety Data Sheets

Reagent for tyramide signal amplification used in many applications including immunohistochemistry, in situ hybridization, electron microscopy, ELISA, and others. It can be used together with both chromogenic and fluorescence visualization methods. It can be added to any other standard IHC protocol and reduces the use of other reagents; improves signal l to noise by reducing the titer of a other reagents in the assay protocol and enables multi-target detection in both IHC and (F)ISH applications.

The PEGylation in Biotin-PEG(4)-SS-Tyramide makes this biotin-phenol membrane-impermeant and restricts labeling to the cell surface. Label-Free Quantitation (LFQ) mass spectrometry combined with ratiometric HRP tagging of membrane vs. synaptic surface proteins can identify the proteomic content of excitatory clefts.


Mapping the Proteome of the Synaptic Cleft through Proximity Labeling Reveals New Cleft Proteins; T. Cijsouw, A. Ramsey, T. Lam, B. Carbone, T. Blanpied and T. Biederer; 2018; 6: 48.

Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation; V. Hung, S. S. Lam, N. D. Udeshi, T. Svinkina, G. Guzman, V. K. Mootha, S. A. Carr and A. Y. Ting; Elife D. Pagliarini 2017; 6: e24463.

In Situ Peroxidase Labeling and Mass-Spectrometry Connects Alpha-Synuclein Directly to Endocytic Trafficking and mRNA Metabolism in Neurons; C. Y. Chung, V. Khurana, S. Yi, N. Sahni, K. H. Loh, P. K. Auluck, V. Baru, N. D. Udeshi, Y. Freyzon, S. A. Carr, D. E. Hill, M. Vidal, A. Y. Ting and S. Lindquist; Cell Syst 2017; 4: 242-250 e4.

Identification of Microprotein-Protein Interactions via APEX Tagging; Q. Chu, A. Rathore, J. K. Diedrich, C. J. Donaldson, J. R. Yates, 3rd and A. Saghatelian; Biochemistry 2017; 56: 3299-3306.

Proximity-dependent labeling methods for proteomic profiling in living cells; C. L. Chen and N. Perrimon; Wiley Interdiscip Rev Dev Biol 2017; 6: e272.

Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts; K. H. Loh, P. S. Stawski, A. S. Draycott, N. D. Udeshi, E. K. Lehrman, D. K. Wilton, T. Svinkina, T. J. Deerinck, M. H. Ellisman, B. Stevens, S. A. Carr and A. Y. Ting; Cell 2016; 166: 1295-1307 e21.

Directed evolution of APEX2 for electron microscopy and proximity labeling; S. S. Lam, J. D. Martell, K. J. Kamer, T. J. Deerinck, M. H. Ellisman, V. K. Mootha and A. Y. Ting; Nat Methods 2015; 12: 51-4.

New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay; X. W. Li, J. S. Rees, P. Xue, H. Zhang, S. W. Hamaia, B. Sanderson, P. E. Funk, R. W. Farndale, K. S. Lilley, S. Perrett and A. P. Jackson; J Biol Chem 2014; 289: 14434-47.

Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging; H. W. Rhee, P. Zou, N. D. Udeshi, J. D. Martell, V. K. Mootha, S. A. Carr and A. Y. Ting; Science 2013; 339: 1328-1331.

Tyramide signal amplification for analysis of kinase activity by intracellular flow cytometry; M. R. Clutter, G. C. Heffner, P. O. Krutzik, K. L. Sachen and G. P. Nolan; Cytometry A 2010; 77: 1020-31.

A. J. Gross and I. W. Sizer; J. Biol. Chem. 1959; 234: 1611.

Bulk or large quantity order?

Do you need larger quantities for your development or production?

Do you need further information of this product?

get in contact

Quick contact

Please send me more information about

We found other products you might like!